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ABSTRACT 

 

Intestinal health and the maintaining the integrity of the intestinal barrier 

are critical to maintaining overall health.  Research conducted over the years has 

consistently shown an unhealthy gut is detrimental to one’s overall well-being 

and is associated with a number of disease states including obesity, autism, 

Inflammatory bowel disease, and other autoimmune disorders.  Chronic intestinal 

inflammation is an innate immune response that can disrupt the intestinal barrier 

causing it to become leaky and leaving the host susceptible to a plethora of 

environmental pathogens.  Inflammation is also an energy draining physiological 

process that also causes health complications. 

Consumption of nonstarch polysaccharides, such as the guar gum 

containing β-galactomannan, have been shown to stimulate the innate immune 

response characterized by high levels of inflammatory cytokines.  In livestock, 

studies have regularly shown the negative side effects of soybean meal β-

galactomannan on health and immune function including impaired nutrient 

absorption, stunted growth, and inflammation.  In vivo studies have also 

elucidated the immunostimulatory effects of mannans.   Gums containing β-

galactomannan are commonly used as thickeners, stabilizers, and binders in 

food industry.  Therefore, it is essential to elucidate the extent of inflammation β-

galactomannan may cause in order to protect the health of consumers.  

 Our study was conducted to further characterize the impact of guar 

gum derived β-galactomannan on health and immune status in Sprague-Dawley 
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rats.  As expected, rats fed β-galactomannan gained less weight throughout the 

course of the study compared to control rats and also consumed less.  These 

effects, however, were not accompanied by an increased inflammatory cytokine 

profile.  Β-galactomannan consumption did not affect inflammatory cytokines IL-

12a, IL-12b, or IL-6 nor did it affect the anti-inflammatory cytokine IL-10 in the 

ileum.  Even more perplexing was that in the jejunum, β-galactomannan 

increased IL-10 mRNA transcript abundance and decreased IL-12a mRNA 

levels.  Based on our experiment, β-galactomannan did not stimulate an innate 

immune response
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CHAPTER 1: LITERATURE REVIEW 
 
 
 

Introduction to Gut Immunology 
 

The gastrointestinal tract (GIT) functions to digest and absorb nutrients. 

However, because it is normally the first point of contact with microbes, it is also 

the largest immune organ in the body and plays a critical role in immune 

homeostasis. Upon exposure to pathogens, self-antigens, and dietary antigens, 

the GIT may mount either an immunogenic or tolerogenic response.1  Typically, 

interactions between gut-associated lymphoid tissue (GALT) and food promote 

oral tolerance of these dietary antigens  via anergy, deletion of T cells, or the 

induction of regulatory T cells.2  In fact, recent studies have investigated the 

induction of oral tolerance as a potential means of treating food allergies and 

other autoimmune disorders.3  Nonetheless, misdirected immune responses and 

impaired gut integrity may result in devastating gut related disorders, such as 

inflammatory bowel diseases (IBD) and food allergies which exacerbates 

disruptions in intestinal epithelial integrity.3  Gut health has also been linked to 

other disease pathologies such as chronic heart failure and autism.4,5 
 Oral 

tolerance involves anergy, deletion of T cells, or the induction of regulatory T 

cells.2 

 

Gastrointestinal architecture 

The small intestine is lined with villi, microvilli, and invaginations, also 

known as “crypts”. Villi are fingerlike projections, which increase surface area for 
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better absorption of nutrients and contain blood vessels to transport food 

systemically. The Lamina Propia (LP) of the villi is a layer of connective tissue 

just under the epithelium of the mucous membrane. Microvilli protrude from the 

enterocytes, or intestinal epithelial cells (IECs), collectively forming the brush 

border to further enhance nutrient absorption.  IECs are held together by tight 

junctions which function to prevent attachment and subsequent invasion of 

pathogenic microbes.6  The intestinal crypts function in cell replication, to 

replenish the epithelial layer, and in mucous production.  Throughout the 

intestinal mucosa, dome-like structures known as Payer’s patches are enriched 

with lymphoid tissue and are key sites for the development of tolerogenic and 

immunogenic responses.  Microfold cells, or M cells, are specialized epithelial 

cells that function in antigen uptake by cells within Payer’s patches. Lymphatics 

from both the Payer’s patch and LP drain into a mesenteric lymph node (MLN) 

where the majority of naïve T cells are activated to promote differentiation into 

effector T cells. Within the Payer’s patches, there is an array of immune cells 

including T cells, B cells, dendritic cells (DC), and Macrophages.  

Collectively, the immune system of the digestive tract is most often 

referred to as gut-associated lymphoid tissue, or GALT. The constant interaction 

between GALT, dietary antigens, and normal flora of the GIT promotes an 

environment characterized by sustained low-level inflammation.7  Environmental 

and genetic-based challenges against the protective epithelial barrier may 

increase intestinal permeability and disrupt inflammatory homeostasis in the GIT.  

Such challenges may result in aberrant immunological responses of pathological 
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significance.  In particular, food allergies are associated with compromised 

intestinal epithelium function and hypersensitive immune function.8,9  

 

Dendritic cells 

Dendritic cells are the major antigen presenting cells (APC) of the immune 

system that bridge innate and adaptive immunity.  Most DC subsets express 

pattern recognition receptors that recognize pathogen-associated molecular 

patterns (PAMPs). Upon antigen recognition, DCs are activated to produce 

cytokines, carry out phagocytosis of the pathogen, and migrate to the MLN for 

maturation. Failure of the DC to mature and migrate results in impaired 

differentiation of effector T cells.10  As surveillance cells, DCs can aggregate 

below M cells of the gut to detect invading pathogens that have crossed the 

epithelial barrier.  However, the majority of immature DCs reside in the lamina 

propria, and can be classified into two subsets: CD103+ DC and CX3CR1 DC.11   

The most discernable difference between these subsets of DCs is in their 

migratory ability. Upon activation by toll-like receptor (TLR) signaling, CD103+ 

DCs travel via the hymphatics to the MLN where antigen presentation induces 

differentiation of naïve T cells into specific effector T cells which is part of the 

adaptive immune response.  In contrast, the CX3CR1 subset is a residential DC 

population that is incapable of migration to MLN and has poor antigen 

presentation abilities.  Schulz et al.11 demonstrated clear migratory differences 

using fluorescent-labeled Dextran.  Mice in the R848 inflammatory group showed 

mobilized CD103+ DC in lymph vessels and no change in location of the 
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CX3CR1 DC.  Yrlid et al.12 also reported R848 signaling via TLRs enhanced 

migration of CD103+ DC from the lamina propria to MLN.  Increased expression 

of costimulatory molecules CD40 and CD86 upon activation and maturation was 

seen in CD103+DC but not in the CX3CR1 cells.11  Furthermore, CX3CR1 DCs 

failed to promote naïve T cell differentiation.  These recent findings indicate 

intestinal CX3CR1 DCs may only possess innate function and serve as the first 

line of defense in the gut.  

These subsets of DCs also differ in their physical functionality. CX3CR1 

DCs have the ability to extend their dendrites between enterocytes by opening 

tight junctions and in doing so, are able to directly sample luminal contents of the 

gut.13  These dendritic extensions can be detected under normal conditions and 

will multiply in the presence of bacterial species. 13,14 

 Pathogen associated molecular patterns of a pathogen can illicit an innate 

immune response and inflammation by binding to a pattern recognition receptor 

(PRR) on a dendritic cell or other innate leukocyte. Under steady state 

conditions, low-level inflammation is present and controlled without causing a 

pathological response. When intestinal DCs are stimulated by self-antigens, 

dietary antigens, or commensal microbes, production and secretion of anti-

inflammatory IL-10 to control proinflammatory stimuli and promote tolerance is 

enhanced. IL-10 produced by the DC itself has an autocrine effect by binding to 

IL-10 receptors and preventing DC maturation and subsequent release of IL-12.15  

Secretion of IL-10 by other innate leukocytes and Tregs also causes inhibition of 

DC maturation, and thus promote a tolerogenic environment. Harmless antigens 



www.manaraa.com

 
 

5 

may also cause unnecessary intestinal inflammation and lead to impaired gut 

function and nutrient utilization.16,17  Proinflammatory cytokines such as IL-12, IL-

6 and TNF-α are produced and secreted by activated and matured dendritic 

cells. Therefore, it is imperative that DCs develop appropriate immune responses 

to stimuli.  Both IL-10 and IL-12 have been implicated in signaling adaptive 

immunity. IL-10 promotes Treg development while IL-12 leads to the 

development of effector T cells such as Th17, Th1, and Th2. 

 

 

 

Figure 1: Immature dendritic cells survey intestinal contents during steady state.  
If no inflammatory signals maturation does not occur and Tregs can be induced.  
Infection and inflammation causes DCs to mature and induce effector T cells.  If a 
DC matures in the presence of IL-10, TGF-β, and a tolerant microenvironment, 
maturation if altered the DC becomes tolerogenic, or modulated.  tDCs can cause 
anergy of T cells, apoptosis of T cells, or differentiation into IL-10 or TGF-β 
producing Tregs.  From Mahnke et al.76 

IL-12 IL-10 
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Regulatory T Cells 

Gershon and Kondo were the first to propose the hypothesis that a subset 

of T cells existed with a primary role in blunting rather than enhancing immune 

responses.18  Research surrounding the concept of “Suppressor” T cells, as they 

were originally named, came to an abrupt halt due to flaws in the initial 

experimental designs.  However, in the early-90’s, advanced molecular tools led 

scientists to again propose the concept of suppressor T-cells which were 

reintroduced as regulatory T- cells (Tregs).18  The Sakaguchi lab demonstrated the 

importance of Treg cells using a mouse model based on thymectomy to remove 

the site of natural Treg cell production.18  Thereafter, mice were reconstituted 

with all T cell subsets with or without Treg cells. The mice devoid of Treg cells 

presented with systemic autoimmune disease whereas their counterparts 

remained healthy. This early experiment has spawned much research on these 

immunosuppressive cells, but some mechanisms are still not clearly defined. 

Many researchers agree two classes of regulatory T cells exist: natural 

regulatory T cells (nTreg) and induced regulatory T cells (iTreg). nTreg cells 

(CD4+,CD25+,Foxp3+) are thought to be antigen specific and develop from 

naïve nTregs produced by the thymus.19 The issue of whether nTregs are innate 

in nature or antigen specific (adaptive) is still controversial.  Interactions between 

MHCII on the DC and the T- cell receptor on the surface of the naïve Treg cell 

leads to development and activation of nTreg cells. These cells are important in 

controlling low-level immune responses in the periphery where they are located.  

nTreg cells express CD25, also known as the α chain of the IL-2 receptor, and 
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Foxp3.6  Foxp3 is a transcription factor crucial for the induction, maintenance, 

and function of Treg cells.20  Mutations in the Foxp3 gene lead to impaired or 

incomplete Treg cell production causing Immune dysregulation 

polyendocrinpathy enteropathy X-linked Syndrome (IPEX), a rare but fatal 

systemic autoimmune disease.21  More than 80% of IPEX patients suffer from 

multiple autoimmune diseases including Irritable Bowel Syndrome (IBS), 

enteropathy, dermatitis, allergies, and Type 1 Diabetes Mellitus (T1DM) and 

ultimately die early in life.  nTreg cells also express CTLA-4 which is an inhibitory 

receptor that downregulates effector T-cell response and may also modulate DC 

function.22  Studies have shown that CTLA-4 blocking antibodies and CTLA-4 

deficient Treg cells attenuate suppression of effector T cells.23,24  Non-regulatory 

T-cells (CD4+,CD25-,Foxp3-) have very low levels of CD25 and will usually lack 

Foxp3, although this remains a topic of discussion among researchers. In the 

lymph node, upon exposure to an antigen via an APC and in combination with IL-

10 and TGF-β, the CD4+ cell differentiate into iTreg cells.25  iTreg will also be 

induced by tolerogenic DCs and cytokine IL-10 to express Foxp3 via TGF-β and 

CD25, making it difficult to determine whether a Treg cell originated from a naïve 

nTreg cell or was induced by APC and cytokines.  Therefore, it is believed the 

majority of antigen specific Tregs are iTreg cells.26,27 

 

The development of immune tolerance via Tregs 

Regulatory T cells have the ability to promote immune tolerance via 

multiple mechanisms, including inhibitory cytokine production, direct disruption of 
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effector T-cells, modulation of dendritic cells, and cytolysis.  These distinct 

mechanisms, which can become redundant, are all required for maximal Treg 

cell function.22 

 

Production of inhibitory cytokine IL-10 

Cytokines are small proteins produced by host cells, particularly 

leukocytes. These signaling molecules can be characterized as pro-inflammatory 

or inhibitory (anti-inflammatory).  Upon exposure to an antigen, 

CD4+CD25+Foxp3+ Treg cells will produce and secrete cytokines IL-10 ad TGF-

β.19  IL-10 protects the host by limiting inflammatory responses and inducing 

tolerogenic DCs by limiting IL-12 production.28  Treg cell depletion of IL-10 

expression increases both lung allergic inflammation and hypersensitivity.29   IL-

10 produced by regulatory T-cells is also essential in preventing irritable bowel 

disease (IBD).22  Although IL-10 is not the only mechanism by which Tregs can 

dampen immune responses, it has been consistently linked to Treg activation.  

Present literature supports the hypothesis that IL-10 from Treg cells is dependent 

on both the organism itself and the disease state of the host.  IL-35 is another 

inhibitory cytokine thought to be required for maximal Treg cell function but the 

implications of IL-35 are still unclear.30 

 

Disruption of effector T-cells (CD4+) 

 Regulatory T cells can directly suppress target effector T cells that elicit an 

inflammatory immune response in the host.  As mentioned previously, Tregs 
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express CD25, the IL-2 receptor α chain, which can drive “cytokine deprivation 

mediated apoptosis”. CD25 supports local IL-2 consumption by Tregs which 

starves developing effector T cells that are dependent on IL-2 for survival.31,32  

However, this mechanism is still vigorously debated and a final consensus 

opinion will require additional research. 

 Treg cells release adenosine by converting ATP to AMP via 

ectonucleotidases CD39 and CD73.33  Ligation between adenosine and the A2a 

receptor present on effector T cells results in a signal transduction pathway 

upregulating second messenger cAMP concentrations.34,35  Elevated intracellular 

levels of cAMP suppresses the immunogenic activity of effector T cells.  

Additionally, adenosine may indirectly suppress effector T cells through 

modulation of DC maturation and the promotion of a tolerogenic phenotype. 

Regulatory T cells may also increase intracellular cAMP concentrations by 

transferring adenosine through gap junctions of effector T cells.36  As with other 

mechanisms, additional studies are required to support and extend existing data 

regarding this particular mechanism before it is viewed as a bona fide action of 

Tregs.   

Not only does the adenosine-A2a receptor complex effect effector T cell 

functioning, it has also been shown to suppress production of the 

proinflammatory IL-6. 37  IL-6 is essential for preventing Treg generation and 

inducing differentiation of CD4+ naïve T cells into proinflammatory Th17 cells.38  

If  an imbalance occurs and Th17 outweighs Tregs, the local host environment 

will favor an immunogenic response rather than promoting tolerance. This 
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inflammatory response is necessary for riding the host of pathogens but is 

unnecessary, and detrimental, when dealing with dietary antigens, self-antigens, 

and commensal microbiota. 

 

Modification of dendritic cells 

Although mediating the immune response by direct interaction with 

effector T cells is beneficial, Tregs often do so through DC mechanisms.  Tregs 

can condition DCs by interactions between CTLA4 and dendritic cell CD80 

and/or CD86. Upon contact, expression of indoleamine 2,3-dioxygenase (IDO) is 

upregulated and acts as a strong regulatory molecule by inducing the catabolism 

of tryptophan into apoptotic metabolites which can suppress effector T cells.39,40  

Tregs also possess the ability to directly downregulate expression of CD80 and 

CD86 on DC.41 Abberant expression of these costimulatory molecules leads to 

unresponsive, or anergic, effector T cells.42  

 

Promotion of cytolysis 

The final way Tregs promote tolerance is by deleting antigen specific T 

cells, thus eliminating an unwarranted immunogenic response against harmless 

antigens. Perforin and granzyme produced by Tregs are packaged into granules 

and released to induce apoptosis of effector T cells.43  Perforin disrupts the cell 

membrane while granzyme, a protease, affects cellular proteins. Fas ligand, used 

by iTregs, also promotes apoptosis of effector T cells.44 
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The preceding modes of action of Tregs lead to immune tolerance by 

promoting: (i) Suppression of immune cells, (ii) deletion of effector T cells and/or 

(iii) anergy also called immune unresponsiveness.19   Depending on the situation 

a specific mechanism will be used to suppress immunogenic responses.45 It is 

crucial to retain a balance between Tregs and effector T cells. When the 

appropriate ratio is disrupted and effector T cells, such as Th17 or Th1, in the 

gut, become the majority, immune responses will produce inflammation. 

Conversely, an unbalanced tolerogenic environment diluted by Tregs would 

leave the host susceptible to harmful pathogens. 

 

β-Galactomannan 

 β-Galactomannan (β-GM) is a non-starch polysaccharide (NSP) fiber 

shown to have adverse effects on the digestion and absorption of other nutrients, 

most likely due to its ability to impair the epithelial barrier function.46  The anti-

nutritive effects associated with β-galactomannan may be secondary to its 

activation of inflammatory immune responses.47   Structurally, galactomannans 

consist of a 

mannose main chain 

(β-1,4-

mannopyranose) 

with galactose side 

chains.  These NSP 

are typically isolated 

Figure 2: β-galactomannan structure 
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from the endosperm of leguminous plant seeds or microbial sources.48  The 

diversity of galactomannans varies based on the galactose:mannose ratio 

(gal:man) with galactose molecules specifying the solubility of each source.49  

Table 1 shows the gal:man ratio of various galactomannan gums and sources.  

Several industries, including the food industry, rely on the important chemical 

properties of galactomannans to promote thickening, gelling, binding, 

emulsifying, increased water holding capacity, and suspension.48  Animal feed 

ingredients, including soybean meal (SBM), also contain β-GM in sufficient 

quantities (1.02-1.51%) to be implicated in reduced weight gain, diminished 

performance, and impaired absorption of glucose and water in poultry.50  Similar 

detrimental consequences of dietary β-GM have also been shown in swine.51,52   

 

Consumption of β-Galactomannan elicits an immunogenic immune 
response  
 
 NSPs, including galactomannan, are produced by leguminous plants and 

extracellularly by pathogenic microorganisms to enhance their virulence.53  

Therefore, it is completely reasonable to hypothesize that oral administration of 

plant derived β-GM will possess immunogenic properties.  Indeed the literature to 

date has indicated strong immunostimuatlory effects of mannan polysaccharides. 

Of particular medical importance, acemannan reportedly reduces mortality rates 

of sarcomas in mice and stimulates DC maturation and subsequent T cell 

activation required to fight infection and disease.54.55  Galactomannans also 

induce the production of innate inflammatory cytokines, including IL-12, IL-6, and 

IFN-γ, and cause DC maturation.56   
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 It is of great importance to maintain balance when it comes to the 

gastrointestinal immune system.  The GIT is constantly exposed to both 

pathogenic and non-pathogenic materials and is responsible for mounting the 

proper immune response.  Eliciting an inflammatory response against harmless 

antigens, such as plant derived β-GM, is detrimental and causes several 

destructive side effects when chronically activated.  Disruption to the epithelial 

barrier, impaired nutrient absorption, and reduced growth due to nutrients being 

partitioned to support the immune response are potential mechanisms.57,58   

 Dendritic cells can sample luminal contents for dietary factors, such as 

galactomannan, which causes antigenic or immunogenic responses by opening 

tight junctions between epithelial cells, antigen direct entry into the Peyer’s 

patches through M cells, or transportation of antigen directly into the lamina 

propria.  In fact, Rescigno et al.59 found that expression of DC transepithelial 

projections increased when bacteria were present.  Galactomannan is 

recognized by PRRs but the exact PRR galactomannan signals through remains 

unclear.  Some researchers speculate cross-talk between TLRs and C-type lectin 

receptors (CTLs) are required for the immune repsonse.60  CTLs are 

carbohydrate recognition domains able to recognize subtle differences in 

arrangement and branching of carbohydrates.60 The main function of CTLs is to 

internalize pathogens for degradation and enhance antigen processing and 

presentation.61  CTLs are thought to promote tolerance by inducing Treg and Th2 

production.62 Geijtenbeek et al.63 demonstrated that when antibodies were used 

to block the DC-SIGN, a CTL, tolerance was compromised and proinflammatory 
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IL-12 concentrations were restored. TLRs are able to recognize foreign 

carbohydrate structures and initiate an intracellular signaling pathway (i.e., the 

MyD88 pathways), which can lead to production and secretion of inflammatory 

cytokines. Communication between TLRs and CTLs may be critical for immune 

tolerance and activation. When a foreign antigen binds concurrently to CTLs and 

TLRs, the TLR can override the tolerant effect of the CTL and evoke an immune 

response, even if the antigen is innocuous galactomannan found in food.63   After 

TLR and CTL activation, intracellular signaling leads to the production of 

proinflammatory cytokines IL-12, IL-6, IL-1, TNF-α and chemokines.55 This innate 

response causes acute inflammation in the gut characterized by infiltration of 

leukocytes and other immune modulators into the tissue.   

 Dendritic cells also trigger the adaptive immune response.  After TLR 

signaling occurs, DCs increase expression of MHC for antigen presentation, and 

increase the production of co-stimulatory molecules, IL-12, adhesion molecules, 

chemokine receptors, and have diminished ability for antigen phagocytosis.64,65,55  

Mature DCs migrate via lymph to the MLN and induce differentiation of naïve 

CD4+ cells into effector T cells, Th1 and Th17, to assist in clearing the infection. 

 

Consequences of intestinal inflammation 
  
 Persistent insults to the gut epithelia, such as continuous intake of 

galactomannan, may result in a long-term inflammatory state known as chronic 

inflammation. Numerous studies have reported on the inverse correlation 

between inflammation and body weight.17  Several mechanisms have been 
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implicated as the root cause of the decrease in weight gain during periods of gut 

inflammation.  Kanno et al.66 showed villous atrophy in histological samples 

collected from swine undergoing immune challenge.  Because the villi are 

essential for effective nutrient absorption, compromised uptake of nutrients was 

likely.  Indeed, measures of glucose, sodium, and chloride transport indicated all 

to be significantly reduced. This reduction of nutrient absorption may exaggerate 

catabolic pathways in the host leading to reductions in weight gain or even 

weight loss. Furthermore, compromised nutrient absorption may be coupled with 

repartitioning of nutrients away from growth to support immunological 

pathways.57  Finally, another contributor to suppressed weight gain during 

inflammation is the direct regulation of metabolic pathways by certain 

proinflammatory cytokines such as TNF-α and IL-6.  One study administered 

inflammatory cytokines to rats at physiological levels which led to altered 

consumption and consequently weight loss.67   

 A more detrimental effect of intestinal inflammation can lead to various 

pathologies.  Chronic stimulation of TLRs in gut epithelial cells and leukocytes 

can cause a decrease in epithelial cell migration and proliferation resulting in 

aberrant intestinal restitution.68  In TLR4 knockout mice, enterocyte apoptosis 

rates were ameliorated, which implicates this PRR in intestinal cell apoptosis.68 

When IECs become apoptotic, barrier integrity is compromised leaving hosts 

susceptible to pathogenic material and opportunistic commensals.57  Invasion of 

these microorganisms exacerbates inflammation in order to protect the host but 

this protective response only further disrupts intestinal integrity and creates a 
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vicious cycle.  It is possible, as has been demonstrated in the literature, that 

plant-derived galactomannan provokes superfluous innate immune responses 

and inflammation.47  Regular consumption may cause chronic inflammation and, 

as previously noted, lead to epithelial damage and defects. 

 

Therapeutic effects of mannans 

 Cancer and cancer treatments, such as chemotherapy, can significantly 

weaken the immune system which is a critical component needed to help fight 

diseases associated with tumors.  It seems logical to hypothesize that the 

inflammatory effects observed during mannan administration may help boost the 

immune system in times of need.  Immunomodulator acemannan has been 

researched extensively for its ability to activate the immune system.  Bacterial 

LPS is commonly used to treat tumors but its use also results in unfavorable side 

effects such as pyrogen-associated toxemia, otherwise known as toxic shock 

syndrome.69 Studies reveal LPS and acemannan both stimulate production of 

inflammatory cytokines IL-1 and TNF-α with acemannan having a more powerful 

effect.70  Compared to control mice, acemannan treated mice presented greater 

tumor regression which could be due to the stimulatory effects of inflammatory 

cytokines.70   

 The seed Fenugeek contains galactomannan that may possess anti-

diabetic properties.  Evans et al.71 found fenugeek consumption inhibited glucose 

absorption and other studies revealed that fenugeek galactomannan decreased 

the post-prandial glucose response.72   
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 Clinical use of a non-toxic, plant derived therapeutic agent to treat 

pathologies is a promising alternative to toxic medications currently used to fight 

different disease states.  Although the therapeutic effects of mannans are 

promising, contradictory evidence is present in the literature.  Some studies show 

no significant therapeutic effect of mannans.  The different outcomes of mannan 

consumption may be due to variances in structure such as the 

galactose:mannose ratio in various galactomannan sources.  Further 

investigation is required to fully elucidate its therapeutic effects. 

 

Enzymatically modified β-GM may have anti-inflammatory effects and 
promote tolerance 
 
 Humans and other species lack the enzymes necessary to digest the non-

starch polysaccharide β-GM but this altered structure can alleviate the 

immunogenicity of the antigen and is necessary to induce anti-inflammatory 

effects and promote a tolerogenic environment.73  The animal industry developed 

particular interest in β-GM and its adverse effects in livestock such as swine and 

poultry.  Some researchers found β-mannanase, an enzyme capable of digesting 

β-GM, is capable of increasing lean gain and average daily gain compared to 

their counterparts who did not consume a feed with the added enzyme.52  Due to 

conflicting data, the effects of β-mannanase in livestock remains unclear. 

 Partially hydrolyzed guar gum (PHGG) supported an anti-inflammatory 

environment revealed by statistically lower levels of IgG in MLNs and reduced 

IgA levels in serum, compared to guar gum (GG).74  Pre-feeding rats PHGG 

diminished protein and mRNA levels of the inflammatory cytokine TNF-α after 
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being administered DSS to induce colitis.  Weight loss and reduced infiltration of 

immune cells were also observed which supports the hypothesis that PHGG 

restrains the mucosal inflammatory response.75   

It is possible that enzymatically digested β-GM promotes a tolerogenic 

environment by preventing maturation of immature DCs and differentiation of 

Tregs from naïve T cells.  Immature dendritic cells are highly capable of antigen 

uptake.  During steady state conditions in the gut there is lack of inflammatory 

signals, such as inflammatory cytokines and chemokines.76  Recognition of 

dietary or self antigens by the PRRs (TLRs and CLRs) of the dendritic cell 

triggers an intracellular signal that leads to the translocation of the transcription 

factor NF-κB to the nucleus which promotes synthesis of IL-10 mRNA.  This anti-

inflammatory cytokine is critical for promoting tolerance in the gut and other host 

tissue.  In this scenario, low amounts of IL-12, an inflammatory cytokine, are 

produced and secreted.  Release of IL-10 by immature DCs has an autocrine 

effect and blocks maturation of the immune cell, which is characterized by 

reduced expression of MHCII, costimulatory molecules, adhesion molecules, and 

IL-12 production.77  It has been demonstrated that DCs, in the presence of IL-10 

antibodies, matured and became capable of activating naïve T cells to develop 

into effector T cells eliciting an immunogenic response.78 The secreted IL-10 is 

also an important signaling molecule in adaptive immunity for the differentiation 

of naïve T cells into IL-10 producing iTregs upon antigen presentation. TGF-β is 

another immunosuppressive and anti-inflammatory cytokine produced by 

immature DCs and iTregs. 



www.manaraa.com

 
 

19 

Modulated dendritic cells travel to the MLNs to promote T cell anergy or 

apoptosis while also inducing Treg production.  The immature dendritic cells 

present the harmless antigen on MHCII to a naïve CD4+ T cells receptor in the 

presence of IL-10 and TGF-β.  The result is production of IL-10 or TGF-β 

secreting iTregs.  Induced Tregs can suppress immune cells, which supports gut 

homeostasis and tolerance.78  IL-10, secreted from any immune cells or IECs, 

inhibits maturation of DCs leading to the conversion of immunogenic DCs to 

tolerogenic DCs.79   

Plenty of research has yet to be completed in order to pinpoint the exact 

mechanism enzymatically digested β-GM promotes tolerance but the above 

pathways appear to be a sound hypothesis. 

 

Roles of IL-10 in immune tolerance 

Interleukin-10 (IL-10) is a pleiotropic cytokine with both 

immunosuppressive and anti-inflammatory effects.  Several leukocytes and 

lymphocytes can produce and secrete IL-10 such as monocytes, macrophages, 

T cells, and dendritic cells.  IL-10 secretion can dampen the immune system and 

prevent excessive collateral damage during times of immunogenic challenge and 

promote a tolerogenic environment upon host exposure to harmless antigens. 

Preliminary research has revealed that administration of IL-10 as a therapeutic 

agent is 100 times more efficient than Cyclosporin A, a common 

immunosuppresor.80 Absence of IL-10 causes uncontrolled chronic inflammation 

and impairs tolerance to dietary and self antigens.81  IL-10 knockout mice 
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presented chronic IBD, anemia, and compromised growth rates compared to 

wild-type mice.81  These deleterious outcomes, to a lesser extent, were even 

present in IL-10 knockouts housed in a germ-free environment highlighting the 

importance of IL-10 in the tolerance of normal enteric antigens.  Injections of IL-

10 ameliorated inflammation, weight loss, and improved survival rates.  

 Mechanistically, IL-10 has both direct and indirect effects on many 

immune cells. In the case of antigen specific T cell differentiation and 

proliferation, IL-10 can directly inhibit the production of IL-2, a cytokine 

responsible for the proliferation of activated T cells.79  IL-10 can also indirectly 

affect naïve CD4+ T cell activation by downregulating APC expression of MHCII, 

adhesion molecules, and costimulatory molecules (CD40, CD80, CD86).64,82  

Inflammatory cytokine and chemokine production is repressed by IL-10.  Without 

co-stimulatory molecules, inflammatory cytokines such as IL12, and chemokines 

migration and activation of T-cells will not occur.  Suppression of DC IL-12 

production by IL-10 prevents stimulation of NK cells and impairs Th1 

development in the periphery.83 Presence of IL-10 modulates DCs and promotes 

a tolerogenic function.  These tolerogenic DCs (tDCs) produce low levels of 

inflammatory cytokines and high levels of anti-inflammatory cytokines, 

particularly IL-10.84 tDCs interact with naïve T cells in the lymph nodes leading to 

anergy, apoptosis, or induction of Tregs. 

 IL-10 also exerts its effects on non-immune cells such as the goblet cells 

of the intestinal tract, which are responsible for producing mucins, an important 

component of mucus.  During an inflammatory challenge, defective folding of 
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proteins may occur leading to endoplasmic reticulum (ER) stress and activation 

of the unfolded protein response (UPR) and exacerbation of intestinal 

inflammation.  Chronic ER stress in goblet cells disrupts mucin production 

therefore depleting the protective mucus barrier of the epithelium.85  IL-10 

maintains mucin secretion by promoting correct protein folding, which 

suppresses ER stress and UPR activation.85  UPR transcription factor ATF6 

translocation to the nucleus is blocked by IL-10 signaling.86 

 

Prebiotic role of hydrolyzed galactomannan 
 
 The use of probiotics and prebiotics to improve gut health has become 

increasingly popular among Americans.  Prebiotics, which are typically non-

digestible oligosaccharides, are utilized by microbiota of the GIT to promote 

growth of selected beneficial bacteria.  Appropriate microbial members of the 

intestine, such as lactobacillus and bifidobacterium, of the intestine displace 

undesirable microflora, inhibit pathogens, and improve immunological status of 

the host.87-89  Clinical studies have revealed administered partially hydrolyzed 

guar gum, prebiotic galactomman, increased bifidobacterium concentrations in 

feces in comparison with control feces and significantly increases 

lactobacillus.90,91   

 Commensal gut microbiota are capable of preventing pathogen 

attachment to epithelial cell and may do so by acting as receptor decoys on 

intestinal epithelial cells.92  Consequently, the host can excrete this pathogen-

prebiotic complex.  Shoaf et al.92 tested numerous prebiotic oligosaccharides and 
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their ability to reduce adherence of Escherichia coli in vitro.  Galactomannan 

oligosaccharides prohibited Escherichia coli adherence to epithelial cells to the 

greatest extent in comparison to other prebiotic oligosaccharides.92  Other 

pathogens such as, Salmonella enterica, also elicit an immune response upon 

attachment characterized by production of inflammatory cytokines and 

chemokines.  Prebiotic galactomannan treatment reduced IL-6 and CXCL8 

production by 40% and 30%, respectively, compared to negative control cultures 

of medium.93  Using natural prebiotic galactomannan to improve gastrointestinal 

health is an exciting and intriguing area of research that will hopefully lead to 

reduced reliance on clinical medications that can cause adverse side effects and 

toxicities. 
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CHAPTER 2: IMPACT OF PLANT DERIVED β-GALACTOMANNAN ON 
HEALTH AND IMMUNE STATUS OF SPRAGUE-DAWLEY RATS 

 
 
 

Abstract 
 
 Intestinal inflammation triggered by dietary antigens or immunogens is an 

energy draining physiological process that compromises gut function and health. 

Guar gum, a common food additive, contains β-galactomannan, which is also 

found on the surface of many microbial pathogens.  Previous studies, both in vivo 

and in vitro, have shown β-galactomannan possesses immunostimulatory 

capabilities. In livestock, β-galactomannan reduced weight gain, impaired nutrient 

absorption, and increased inflammatory cytokines.  In this study, male Sprague-

Dawley rats received either the control diet or the experimental diet containing 

guar gum β-galactomannan (100g/kg) in place of cellulose.  After 3, 7, 14, and 21 

days rats were sacrificed and the small intestine was collected for analysis.  Rats 

receiving β-galactomannan gained significantly less weight  (9.4%; p<0.05) and 

exhibited reduced food intake compared to control rats (12.3%; p<0.05).  Based 

on previous studies it was expected that this result was owing to an inflammatory 

state; however, mRNA abunance of inflammatory cytokines IL-12a, IL-12b, and 

IL-6 in the ileum were not affected by β-galactomannan consumption.  Moreover, 

the anti-inflammatory cytokine IL-10, as well as Unfolded Protein Response 

(UPR) markers ATF-6 and PERK were without effect.  Contrary to our 

hypothesis, β-GM increased IL-10 and decreased IL-12 mRNA abundance in the 

jejunum.  Based on our study, guar gum β-galactomannan reduced overall 
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weight gain and dietary intake in rats, but did not invoke an innate immune 

response. 

 

Introduction 
 

Dietary antigens and immunogens can cause gut inflammation, and if 

chronic or repeated exposures occur, gut function and health become 

compromised.  Locust bean gum, guar gum, tara gum and fenugreek gum are 

common industrial food additives used primarily as thickeners, binders, and 

stabilizers.94  These seed gums are a major source of β-galactomannan (β-GM), 

a non-starch polysaccharide (NSP) composed of a β-(1,4)-mannan backbone 

with α-(1,6) side chains.  The galactose to mannose ratio is variable between 

galactomannan sources leading to various functional properties.  Animal 

studies46,49,51,52 indicate that β-galactomannan may contribute to the anti-

nutritional aspects of soybean products which include inflammation and 

diminished growth and nutrient utilization.  Furthermore, there are indications that 

Ig profiles may be altered in animals consuming guar gum54.  These studies 

underscore a key question regarding dietary β-galactomannan, that being 

whether consumption of this NSP induces an innate immune response and 

invokes a pro-inflammatory response in the gut.  Due to their commercial use 

and prevalence in microbial sources, it is important to characterize and 

understand the immunological effects and health consequences of 

galactomannan consumption.  Consequently, the aim of the present study was 

two-fold.  First, we sought to test the hypothesis that consumption of significant 
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quantities of β-GM (provided as guar gum) invokes an innate immune response 

and promotes inflammation in the gut, and reduces feed intake and growth in 

rats.  Secondly, we determined whether gastrointestinal disturbances associated 

with consumption of guar gum were linked with increased expression of markers 

of the unfolded protein response (UPR).  

 

Materials and Methods 
 
Animals.  All protocols were approved by the Institutional Animal Care and Use 

Committee and performed according to Iowa State University Laboratory Animal 

Resources Guidelines.  Six-week-old male Sprague-Dawley rats (N=96; Harland 

Teklad, Indianapolis, IN) were obtained at 148-171 grams.  Rats were singly 

housed in plastic cages in a room with a 12 hour light-dark cycle, and given ad 

libitum access to food and water.  The experiment was carried out with two 

replicate groups of rats started on dietary treatments 3 weeks apart.  The rats 

were maintained on a soy free pellet until started on experimental diets (see table 

2.1).  Each treatment group within replicate was further divided into four groups 

that were indicated by days on diets until sacrifice: day 3 (n=7), day 7 (n=7), day 

14 (n=7), and day 21 (n=7).  The second trial of mice (n=40) were fed a the same 

generic soy pellet diet but were acclimated for four weeks before being randomly 

divided into the two dietary treatment groups (control n=20, β-GM n=20) and 

assigned to a sacrifice time: day 3 (n=5), day 7 (n=5), day 14 (n=5), and day 21 

(n=5).  On their respective sacrifice days, rats were fasted for six hours before 

being euthanized by CO2 asphyxiation for sample collection.  Whole blood was 



www.manaraa.com

 
 

26 

obtained immediately via cardiac puncture and centrifuged for isolation of 

plasma.  Small intestine, spleen, and epididymal fat pad tissue was collected and 

frozen on dry ice prior to storage at -80oC. 

 

RNA extraction and isolation.  RNA was isolated from the ileum and jejunum a 

using Quick Gene RNA tissue kit SII (Kurabo, Osaka, Japan).  The 

manufacturer’s instructions were followed with minor changes.  A small amount 

of tissue was pulverized using liquid nitrogen, a mortar bowl and pestle.  A pea-

sized amount of the crushed tissue was place in a tube containing 500 µl of LRT 

and β-mercaptoethanol mixture.  Samples where then homogenized using a 

standard sonicator for 30 seconds and then centrifuged for three minutes at 

17,000 x g.  The centrifuge step was completed at room temperature.  Following 

centrifugation, 385 µl of supernatant was removed from samples and transferred 

into a new tube.  After the transfer, 175 µl of SRT was added and samples were 

vortexed for 15 seconds.  Next, 140 µl of 99% EtOH was added to the tube and 

subsequently vortexed again for 1 minute.  Samples were pipetted into cartridges 

and placed into a QuickGene-810 Autogen (FujiFilm, USA) for further processing.  

Trace DNA was removed from RNA using a TURBO DNA-freeTM kit (Invitrogen, 

Carlsbad, CA).  To determine the concentration and purity of RNA samples, the 

NanoDrop ND-1000 Spectrophotometer was used. 

 

cDNA synthesis and quantitative real-time PCR.  First strand cDNA was made 

in a 20 µl mixture using a BioRad iCycler.  First, 1 µl RNA, 1 µl 10 mM dNTP mix 
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and distilled water to 12 µl.  Mixture was heated to 65oC for 5 minutes and chilled 

on ice.  4 µl 5x First-Strand buffer, 2 µl 0.1 M DTT, and 1 µl RNaseOUTTM 

Recombinant Ribonuclease Inhibitor was added to the initial mixture and gently 

mixed.  Mixture was incubated at 37oC for 2 minutes.  Following incubation, 1 µl 

of M-MLV Reverse Transcriptase was added and the resulting mixture was 

incubated at 37oC for 50 minutes followed by an inactivation step for 15 minutes 

at 70oC. 

 Quantitative real-time polymerase chain reactions (qPCR) were performed 

using Roche Light Cycler 96 in triplicates.  Each 20 µl PCR mixture contained 10 

µl Fast Start Essential DNA Green Master 2x concentration (Roche), 100µM 

forward primer (Integrated DNA Technologies), 100µM reverse primer (Integrated 

DNA Technologies), 8 µl RNase free water, and 1 µl of cDNA.  The 40 cycle 

amplification protocol consisted of an initial denaturation at 95oC for 10s, followed 

by 10s annealing step at 56-60oC, depending on gene, and extension at 72oC for 

10s. 

 

Statistics.  Statistics were calculated using the SAS 9.4 software (SAS, Cary, 

NC).  Data from both replicates were combined for analysis unless otherwise 

noted.  Means of treatment group were compared to control using the student’s t-

test.  Differences were considered significant at p<0.05 and a tendency at 

p<0.10. 
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Results 
 
β-galactomannan supplementation lowered total weight gain and total feed 

intake.  Rats receiving the β-GM diet gained, on average, 9.4% less weight than 

control rats (p<0.05, Fig. 1A).  However, total feed intake of rats consuming β-

GM was also significantly reduced (p<0.05) by about 12% (Fig. 1B). 

 

β-galactomannan reduced dietary intake throughout the 21 day experiment.  

Analysis of the interaction between diet and sacrifice day revealed rats fed β-GM 

regularly ate less than control rats during the duration of the study.  Rats fed β-

GM consumed less than rats fed the control diet (p<0.05, Figure 2).  On day 

fourteen we observed the biggest discrepancy in feed intake between treatments 

revealing rats consuming β-GM ate 36g less. By day 21 the difference in feed 

intake between the two groups decreased to 28g, roughly.  Diet x sacrifice day 

interaction p<0.10. 

 

Dietary treatment did not change cytokine mRNA abundance in the Ileum.  

β-GM did not impact anti-inflammatory IL-10 mRNA levels (Fig. 3A).  Likewise, 

transcript abundance of inflammatory cytokines IL-6, IL-12a, and IL-12b were not 

affected by β-GM treatment (Fig. 3B, 3C, 3D). 

 

Diet did not affect ileal mRNA abundance of transcription factors PERK and 

ATF-6.  Although it appears β-GM decreased mRNA abundance of the 
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transcription factors PERK and ATF-6 not significant differences were identified.  

β-GM did not alter PERK or ATF-6 mRNA levels (Fig. 4). 

 

β-GM treatment reduced jejunum IL-12a mRNA transcript abundance. 

Analysis of mRNA transcript abundance for IL-12a in the jejunum revealed 

significant alterations in rats fed β-GM relative to control rats (p<0.05) (Fig. 5).  β-

GM supplementation resulted in lower mRNA levels of IL-12a. 

 

Neither dietary treatment significantly impacted IL-12b transcript 

abundance in the jejunum of rats.  Although the data suggests β-GM 

increased abundance of IL-12b mRNA, analysis revealed no significant 

differences between dietary groups (Fig. 6). 

 

IL-10 transcript abundance in the jejunum was greater in rats fed β-GM 

compared to control rats.  Data for IL-10 transcript abundance revealed 

increased IL-10 mRNA levels in the jejunum of rats fed β-GM.   

 

Discussion 
 
 β-GM has been associated with unnecessary immune system stimulation 

and subsequent weight loss; however, the current literature is controversial and 

scarce.  Here, we hypothesized that consumption of β-GM would trigger an 

unwarranted innate immune response. 



www.manaraa.com

 
 

30 

 Dendritic cells (DCs) are capable of monitoring luminal contents and 

orchestrating a tolerogenic or immunogenic immune response. Depending on the 

intestinal micromileu, subtype, and maturation, DCs and their cytokine profile 

induce differentiation of naïve CD4+ T-cells into immunogenic (Th1, Th2, Th17) 

or tolerogenic (Treg) T-cells.95  Research shows NSPs, which are innocuous food 

antigens, may evoke a superfluous inflammatory immune reaction which has 

been characterized by enhanced macrophage activation, increased NF-κB 

expression, raised levels of serum IgA, and high IgG and IgM activity in 

mesenteric lymph nodes.47,52,74  Because inflammation is an energy draining 

process, nutrient partitioning favors immunological processes instead of anabolic 

pathways which often leads to decreases in body weight due to wasting.16  

Persistent inflammatory insults to gut epithelial have also been shown to cause 

villi atrophy and consequently impaired nutrient absorption, ER stress, increase 

autophagy of mucosal cells, reduced brush border enzyme activity, aberrant 

intestinal restitution, compromised barrier integrity, and susceptibility to 

pathogenic and opportunistic commensals.58,66,68,96  In livestock, studies have 

demonstrated that by enzymatically breaking down  β-GM in soybean meal with 

β-mannase, fewer β-GMs are able to induce an immune response and adverse 

side effects are alleviated.52,97,98	
  

 Inflammatory cytokines are a hallmark of the innate immune response and 

have been shown to be produced after β-GM is recognized by PRRs on DCs and 

macrophages.99  The resulting immunogenic DC can induce effector T-cell 

differentiation.  Inflammatory cytokines are necessary T-cell induction and for 
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recruiting inflammatory cells the site of infection.  As immune cells aggregate, 

even more inflammatory cytokines are generated along with reactive oxygen 

species (ROS).  Both these factors are capable of activating endoplasmic 

reticulum (ER) stress in mucosal cells and consequently the unfolded protein 

response (UPR).100  PERK and ATF-6 are two important genes involved in 

regulating the UPR.85,86  Based on this concept, it would be expected that the 

mRNA abundance of both transcription factors would be elevated in rats fed β-

GM.  However, our data reveals no significant differences between dietary 

treatments. 

 Livestock studies have consistently documented decreased weight gain in 

β-GM feeding studies.  This inverse relationship between β-GM and growth 

inhibition is rational considering the adverse effects the inflammatory response 

has on intestinal epithelium.  Any damage to barrier function, such as reduced 

villi height, can lead to malabsorption of key nutrients and most of the nutrients 

that still get absorbed will be utilized by the body to provide energy for 

immunological processes.  Our study shows consumption of β-GM reduced total 

weight gain in rats by ~11% which is exactly what we had expected.  Further 

analysis of our data revealed that β-GM also reduced total feed intake by ~12%.  

It is difficult to determine if the β-GM-mediated weight reduction is actually due to 

inflammation caused by β-GM or if an unfavorable taste of β-GM resulted in 

decreased food intake and consequently reduced weight gain.  The largest 

difference in food intake occurred on day 14, where control rats, on average, 

were consuming ~16% more than those receiving the β-GM diet.  This 
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discrepancy in dietary intake may be the result of innate immune responses in 

rats fed β-GM.   

 If inflammation is actually the culprit affecting weight reduction in this 

study, it is reasonable to assume inflammatory cytokine (IL-6, IL-12a, IL-12b) 

transcript abundance would be higher in rats fed β-GM and the anti-inflammatory 

cytokine IL-10 would be lower.  Contrary to our hypothesis and existing literature, 

there was no diet effect on any cytokine (IL-6, IL-12a, IL-12b, IL-10) mRNA 

abundance in the ileum.  Even more perplexing was that we observed significant 

changes in jejunum cytokine mRNA between diet groups and the results are 

opposite of what we anticipated.  IL-12a transcript abundance decreased in rats 

fed β-GM whereas IL-10 increased.  Previous literature reports the β-GM 

increases inflammatory cytokines and decreases anti-inflammatory cytokines.47  

This suggests its likely that β-GM is captured by C-type lectin receptors (CTLs) 

such as Mannose receptor (MR) and DC-SIGN.101  When MR and DC-SIGN 

recognize high mannose containing antigens, such as β-GM, the dendritic cell 

will capture and present them without activating the cell.102  CTLs may also 

interfere with TLR signaling and as a result inhibit DC maturation.102 

Various studies have shown IL-10 is the primary cytokine produced 

following activation of MR and DC-SIGN on DC.101-104  The autocrine effect of IL-

10 on DCs modulates maturation resulting in tolerogenic DCs.  An alternative 

explanation for increased IL-10 and decreased IL-12a is that the elevated IL-10 

could be an adaptive response after prior exposure to β-GM in order to down 

regulate inflammation in the jejunum.  
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Future studies should consider using similar fiber types when comparing 

diet effect.  In our study, guar gum is a soluble fiber and cellulose, used in the 

control diets, is an insoluble fiber.  Because guar gum is soluble, it attracts water 

and will turn into a gel-like consistency during digestive processes.  This gel can 

slow gastric emptying and signal satiety causing the rat to consume less and 

may be way our guar gum fed rats weighed less than rats fed the control diet. 

 Overall, our study showed inflammatory cytokine and UPR transcription 

factor mRNA abundance was not significantly increased in rats consuming β-GM.  

We can therefore conclude, from these inflammatory markers, there is no 

inflammatory response associated with β-GM intake.  In the jejunum, β-GM 

surprisingly increased anti-inflammatory cytokine IL-10 transcript abundance.  

Cytokine IL-10 could possibly promote tolerance in the jejunum.  Although, our 

study contradicts present research, it should be noted many of the experimental 

designs use mannans or galactomannans of different configurations from 

sources other than guar gum which could account for the variances in immune 

response. 
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Table 1: Galactose to mannose ratio of different galactomannan  

 

 

 
Table 2: Ingredient composition of the control and β-galactomannan diets 
fed to rats 
 

Source Gal:Man Ratio 
Guar gum 1:1.7 
Soybean meal 1:1.8 
Fenugreek gum 1:1.1 
Carob bean gum (Locust bean gum) 1:3.5 

Tara Gum 1:3.0 

Componentsa Control diet (g/kg) β-GM diet (g/kg) 

Sucrose 100.0 100.0 
Maltodextrin 132.0 132.0 
Corn Starch 327.5 327.5 
Casein 200.0 200.0 
Cellulose 100.0 0.0 
Guar Gum 0.0 100.0 
Corn Oil 90.0 90.0 
Premixb 50.5 50.5 

a  All diet ingredients were purchased from Harlan Teklad (Madison, WI), choline 
bitartrate (Sigma Aldrich). 
b  Premix provided at 50 g/kg diet (g/kg diet): AIN-93 vitamin mix, 10; AIN-93 
mineral mix, 35; L-Cystine, 3; Choline Bitartrate, 2.5; TBHQ, 0.014. 
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Figure 1: β-galactomannan supplementation causes reduced weight gain 
and reduced dietary intake. Male Sprague-Dawley rats (N=96) were randomly 
assigned to two different experimental replicates: Replicate 1 (n=56), Replicate 2 
(n=40).  Rats in each replicate received a control diet or a diet containing beta-
galactomannan (100g/kg).  Rats in both dietary groups were randomly assigned 
one of four sacrifice days (day 3, 7, 14, 21). Bars represent pooled data from rats 
in replicate 1 and replicate 2. Values shown are group means ±SE.  Asterisk 
indicates significant difference in group mean when compared to the control 
using a student’s t-test (p<0.05). 
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Figure 2:  Rats fed β-GM ate less throughout the three weeks study 
compared to control mice. Male Sprague-Dawley rats (N=96) were randomly 
assigned to two different experimental trials: Replicate 1 (n=56), Replicate 2 
(n=40).  Rats in each replicate received a control diet or a diet containing beta-
galactomannan (100g/kg).  Rats in both dietary groups were randomly assigned 
one of four sacrifice days (day 3, 7, 14, 21). β-GM reduced dietary intake 
throughout the course of the 21 day experiment. The largest discrepancy in 
dietary intake occurs on day 14.  Rats consuming β-GM ate ~36g less than 
control rats on day 14.  Values shown are group means ±SE.  Asterisk indicates 
significant difference in group mean when compared to the control using a 
student’s t-test (p<0.05). Diet x sacrifice day interaction p=0.0858.  
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Figure 3: β-GM did not alter ileal IL-10, IL-6, IL-12a, or IL-12b transcript 
abundance.  IL-10 (A), IL-6 (B), IL-12a (C), IL-12b (D). Male Sprague-Dawley 
rats (N=96) were randomly assigned to two different experimental replicates: 
Replicate 1 (n=56), Replicate 2 (n=40).  Rats in each replicate received a control 
diet or a diet containing beta-galactomannan (100g/kg).  Rats in both dietary 
groups were randomly assigned one of four sacrifice days (day 3, 7, 14, 21). 
Bars represent pooled data from rats in replicate 1 and replicate 2. Means 
between the dietary groups were not statistically significant.  Values shown are 
group means ±SE.   
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Figure 4: β-GM did not alter ileum mRNA transcript abundance of the PERK 
or ATF-6.  Male Sprague-Dawley rats (N=96) were randomly assigned to two 
different experimental replicate: Replicate 1 (n=56), Replicate 2 (n=40).  Rats in 
each replicate received a control diet or a diet containing beta-
galactomannan(100g/kg).  Rats in both dietary groups were randomly assigned 
one of four sacrifice days (day 3, 7, 14, 21). Bars represent pooled data from rats 
in replicate 1 and replicate 2. Means between the two dietary groups were not 
statistically significant.  Values shown are group means ±SE.   
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Figure 5: β-GM treatment reduced jejunum IL-12a mRNA transcript 
abundance.  Male Sprague-Dawley rats (N=96) were randomly assigned to two 
different experimental replicates: Repliate 1 (n=56), Replicate 2 (n=40).  Rats in 
each replicate received a control diet or a diet containing beta-galactomannan 
(100g/kg).  Rats in both dietary groups were randomly assigned one of four 
sacrifice days (day 3, 7, 14, 21). Bars represent pooled data from rats in replicate 
1 and replicate 2. Values shown are group means ±SE.  Asterisk indicates 
significant difference in group mean when compared to the control using a 
student’s t-test (p<0.05). 
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Figure 6: Neither dietary treatment significantly impacted IL-12b transcript 
abundance in the jejunum of rats.  Male Sprague-Dawley rats (N=96) were 
randomly assigned to two different experimental replicates: Replicate 1 (n=56), 
Replicate 2 (n=40).  Rats in each replicate received a control diet or a diet 
containing beta-galactomannan (100g/kg).  Rats in both dietary groups were 
randomly assigned one of four sacrifice days (day 3, 7, 14, 21). Bars represent 
pooled data from rats in replicate 1 and replicate 2. Means between the dietary 
groups were not statistically significant.  Values shown are group means ±SE. 
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Figure 7:  IL-10 transcript abundance in the jejunum was greater in rats fed 
β-GM compared to control rats.  Male Sprague-Dawley rats (N=96) were 
randomly assigned to two different experimental replicates: Replicate 1 (n=56), 
Replicate 2 (n=40).  Rats in each replicate received a control diet or a diet 
containing beta-galactomannan (100g/kg).  Rats in both dietary groups were 
randomly assigned one of four sacrifice days (day 3, 7, 14, 21). Bars represent 
pooled data from rats in replicate 1 and replicate 2. Values shown are group 
means ±SE.  Asterisk indicates significant difference in group mean when 
compared to the control using a student’s t-test (p<0.05). 
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